Novel Acid-catalysed Rearrangement of 4-Substituted Pentacyclo[5.3.0.0 ${ }^{2.5} .0^{3.9} .0^{4.8}$]decan-6-ones; X-Ray Molecular Structure of 1-Phenylpentacyclo[4.4.0.0 ${ }^{2,10} \cdot 0^{3.8} \cdot 0^{5.7}$]decan-4-one

Toshio Ogino*
Department of Chemistry, Faculty of Education, Niigata University, Niigata 950-21, Japan Kazuyuki Awano Department of Industrial Chemistry, Nagaoka College of Technology, Nagaoka 940, Japan Yoshimasa Fukazawa
Department of Chemistry, Hiroshima University, Hiroshima 730, Japan

4-Substituted pentacyclo[5.3.0.0 $\left.0^{2.5} .0^{3.9} \cdot 0^{4.8}\right]$ decan- 6 -one derivatives $\mathbf{2 a}$ and \mathbf{b} undergo a novel acidor Ag^{+}-catalysed rearrangement to the hitherto unknown pentacyclo[4.4.0.0 $\left.0^{2.10} \cdot 0^{3.8} .0^{5.7}\right]$ decane ring system $3 \mathbf{a}$ and \mathbf{b}. The structure of compound $\mathbf{3 a}$ was established by X-ray crystallographic analysis.

Although it is well documented that certain metal-catalysed rearrangements of cubane, homocubane, and 1,8 -bishomocubane derivatives give cuneanes or their congeners by skeletal reorganisation, ${ }^{1}$ 1,3-bishomocubane derivatives have been known to undergo only cage-opening reaction by reaction with acid, ${ }^{2} \mathrm{Rh}^{1,3}$ or Ag^{1} ion ${ }^{4}$ and no report has appeared on such skeletal rearrangements with 1,3-bishomocubane derivatives.
In connection with our previous papers concerning the ringopening reactions of trishomocubanones with acid or $R h^{1,5}$ we report here the first acid- or Ag^{+}-catalysed skeletal rearrangement of 4-phenyl- and 4-methyl-1,3-bishomocubanones 2a and 2 b to a new pentacyclo $\left[4.4 .0 .0^{2,10} .0^{3,8} .0^{5,7}\right]$ decan-4-one system 3a and \mathbf{b}, and the X-ray structure determination of one of the products.

a; $R=P h$
a; $R=P h$
b; $R=M e$
b; $R=M e$
c; $R=H$
d; $\mathrm{R}=\mathrm{OMe}$
Reagents and conditions: $\mathrm{i}, h \mathrm{v}$; ii, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$.
The cage ketones 2 a and $\mathbf{2 b}$ were obtained by irradiation of the dienones $1 \mathbf{1 a}$ and $1 \mathbf{b}$, which were prepared by the reaction of compound $\mathbf{1 d}^{2}$ with PhLi and MeLi , respectively. While compound 2b was obtained as the sole photochemical product, compound 2 a was obtained along with the head-tohead, cis-anti-cis photodimer of compound 1a. \dagger
Reaction of compound 2 a with BF_{3} in benzene at room temperature for 30 min and chromatographic separation of the products, furnished compound 3a in 41% yield. No dienone products were isolated.

The IR spectrum of compound 3a showed an absorption band for a saturated carbonyl group ($1720 \mathrm{~cm}^{-1}$), and the ${ }^{1} \mathrm{H}$ NMR spectrum did not show any signals for olefinic protons, suggesting that the product is a saturated pentacyclic ketone.

Moreover, the ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3a (see Table 1) showed six signals upfield of $\delta_{c} 35$, a region where no

Table 1. ${ }^{13} \mathrm{C}$ NMR chemical shifts and multiplicities of compounds 3a and $\mathbf{3 b}$.

3a	3b	
215.36 (s)	216.46 (s)	C-4
48.05 (d)	47.83 (d)	C-2, -3, -5, -6, -7, -8 and -10
40.68 (d)	38.51 (d)	
37.03 (d)	37.11 (d)	
32.17 (d)	32.38 (d) $\}$	
28.95 (d)	29.00 (d)	
26.07 (d)	26.00 (d)	
25.57 (d)	25.34 (d)	
30.24 (t)	30.10 (t)	C-9
24.24 (s)	15.63 (s)	C-1
$\begin{aligned} & 143.48 \text { (s) } \\ & 128.52(2 \mathrm{C}, \mathrm{~d}) \\ & 127.31(2 \mathrm{C}, \mathrm{~d}) \\ & 126.31 \text { (d) } \end{aligned}$	22.39 (q)	$\mathbf{P h}$ for 3a; Me for 3b

signals were observed in the spectrum of compound 2a. This strongly suggests the presence of two cyclopropane rings in compound 3a. From these spectral data and from mechanistic considerations analogous to those for the Ag^{+}-catalysed reactions of cubanes ${ }^{1}$ the structure $3 a$ can be deduced for the product of acid-catalysed reaction of compound $2 a$.

An X-ray crystallographic analysis was carried out to establish the structure of compound 3a. Figure 1 shows a perspective view of one molecule of compound 3a. Selected fractional atomic co-ordinates are listed in Table 2, and interatomic distances and bond angles are listed in Table 3.

Although compound 2b was similarly transformed into compound 3b in 33% yield (room temperature; 21 h), the unsubstituted cage ketone $2 \mathrm{c}^{6}$ was recovered unchanged after reaction with BF_{3} for 55 h at room temperature. The structure of compound $\mathbf{3 b}$ was deduced from its spectral data, especially the ${ }^{13} \mathrm{C}$ NMR spectrum (see Table 1), which closely resembled those for compound 3a.

[^0]

Fig. 1. ORTEP drawing of the compound 3a.

Table 2. Fractional co-ordinates $\left(\times 10^{4}\right)$ for compound 3a with esds in parentheses.

Atom	x	y	z
O	$5633(1)$	$745(2)$	$3684(2)$
C(1)	$4920(2)$	$-3562(3)$	$1979(2)$
C(2)	$4482(2)$	$-3024(3)$	$2924(2)$
C(3)	$5434(2)$	$-2174(3)$	$4066(2)$
C(4)	$5841(2)$	$-698(3)$	$3577(2)$
C(5)	$6557(2)$	$-1332(3)$	$2991(2)$
C(6)	$6121(2)$	$-2973(3)$	$2281(2)$
C(7)	$7008(2)$	$-2993(3)$	$3624(2)$
C(8)	$6458(2)$	$-3415(3)$	$4483(2)$
C(9)	$5914(2)$	$-5124(3)$	$4112(2)$
C(10)	$4824(2)$	$-4796(3)$	$2906(2)$
C(11)	$4030(2)$	$-3600(3)$	$623(2)$
C(12)	$4250(2)$	$-2899(3)$	$-327(2)$
C(13)	$3411(2)$	$-2882(3)$	$-1569(2)$
C(14)	$2336(2)$	$-3537(3)$	$-1900(2)$
C(15)	$2094(2)$	$-4240(3)$	$-986(3)$
C(16)	$2931(2)$	$-4269(3)$	$254(2)$

The formation of products $\mathbf{3 a}$ and $\mathbf{3 b}$ can be rationalised as depicted in Scheme 1. Taking into account the fact that the reaction is accelerated by the substituent at $\mathrm{C}-4$ in the order $\mathrm{Ph}>\mathrm{Me}>\mathrm{H}$, the formation of the cyclobutanium cation 5 via fission of the $\mathrm{C}-4-\mathrm{C}-5$ bond in the BF_{3} complex of the substrate 4 may be regarded as the rate-determining step,

(6)

(3a, b)

Scheme 1.
and the remaining rearrangement $5 \longrightarrow 6 \longrightarrow 3 a, b$ proceeds rapidly. The strain energy obtained by MM2 calculation ${ }^{7}$ for the skeletal hydrocarbon 7 is $27.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ lower than that for hydrocarbon 8 as shown below. The driving force of the reaction $\mathbf{2} \longrightarrow \mathbf{3}$ can thus be explained in terms of thermodynamic control.

Although the reaction $\mathbf{2 \longrightarrow 3}$ is strikingly similar to the silver ion-catalysed rearrangements observed for cubane, homocubane, and 1,8 -bishomocubane systems, ${ }^{1}$ to the best of our knowledge this is the first example of this type of reaction observed as an acid-catalysed ketone-ketone rearrangement. ${ }^{8}$ The reaction $2 \longrightarrow 3$ was also catalysed by AgClO_{4} (benzene; room temp.; $5 \mathrm{~h} ; 26 \%$). However, the presence of the carbonyl group seems to be essential for this ring system to undergo the silver ion-catalysed rearrangement, because treatment of the corresponding acetate 9 [obtained as a single compound by reduction of compound 2 a with NaBH_{4} followed by conventional acetylation; see Experimental section] with AgClO_{4} only resulted in recovery of the starting material.

(9)

Experimental

M.p.s were determined on a Yanaco micro melting point apparatus and are uncorrected. IR spectra were recorded on a JASCO A-3 spectrophotometer. UV spectra were obtained on a JASCO UVIDEC-505 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were determined on JEOL JNM-GX $270(270 \mathrm{MHz})$ and Hitachi R-600 (60 MHz) spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra (in CDCl_{3}) were obtained on a JEOL JNM-GX $270(67.5 \mathrm{MHz})$ spectrometer. Mass measurements were obtained on a Hitachi M-60 mass spectrometer at an ionisation potential of 70 eV . Photochemical reactions were carried out on solutions under nitrogen in Pyrex tubes by using a 300 W high-pressure mercury lamp. Extracts were dried ($\mathbf{M g S O}_{4}$).

5-Phenyltricyclo[5.2.1.0 ${ }^{2,6}$]deca-4,8-dien-3-one 1a.-To a stirred solution of compound $1 d^{2}(19.3 \mathrm{~g}, 0.11 \mathrm{~mol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(300 \mathrm{~cm}^{3}\right.$ at $0^{\circ} \mathrm{C}$ under nitrogen was added an ethereal solution of phenyl-lithium ($1.09 \mathrm{~mol} \mathrm{dm}^{-3} ; 95 \mathrm{~cm}^{3}$ during 1 h , and the mixture was refluxed for another 2 h . The solution was poured into ice-cold 25% sulphuric acid, and stirred vigorously for 2 h . Most of the organic solvent was evaporated off and the aq. solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with aq. sodium hydrogen carbonate and brine, dried, and evaporated to dryness. Chromatography on silica gel and crystallisation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane yielded compound $1 \mathrm{la}\left(15.2 \mathrm{~g}, 62 \%\right.$), m.p. $123-124^{\circ} \mathrm{C}$ (Found: C, 86.4; $\mathrm{H}, 6.4 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ requires $\mathrm{C}, 86.45 ; \mathrm{H}, 6.35 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right)$ $1675 \mathrm{~cm}^{-1}$ (α, β-unsaturated ketone); $\lambda_{\max }$ (cyclohexane) 222 and

Table 3. Selected bond distances $/ \AA$ and angles (${ }^{\circ}$) with esds in parentheses.

$\mathrm{O}-\mathrm{C}(4)$	$1.215(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.522(3)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.497(3)$	$\mathrm{C}(1)-\mathrm{C}(10)$	$1.524(3)$
$\mathrm{C}(1)-\mathrm{C}(1)$	$1.489(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.515(3)$
$\mathrm{C}(2)-\mathrm{C}(10)$	$1.501(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.517(3)$
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.549(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.470(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.533(3)$	$\mathrm{C}(5)-\mathrm{C}(7)$	$1.518(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.478(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.512(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.520(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.504(4)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$114.7(2)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	$59.0(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(11)$	$115.7(2)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(10)$	$116.4(2)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(11)$	$118.2(2)$	$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(11)$	$119.0(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$111.3(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(10)$	$60.6(2)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(10)$	$108.7(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$107.3(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$102.7(2)$	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$103.9(2)$
$\mathrm{O}-\mathrm{C}(4)-\mathrm{C}(3)$	$125.8(2)$	$\mathrm{O}-\mathrm{C}(4)-\mathrm{C}(5)$	$12.7(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.5(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113.9(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(7)$	$105.0(2)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(7)$	$57.9(2)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$119.3(2)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$117.9(2)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$60.5(2)$	$\mathrm{C}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	$61.5(2)$
$\mathrm{C}(5)-\mathrm{C}(7) \mathrm{C}(8)$	$109.7(2)$	$\mathrm{C}(6) \mathrm{C}(7)-\mathrm{C}(8)$	$110.6(2)$
$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$103.3(2)$	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(9)$	$106.3(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$107.8(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$102.9(2)$
$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(2)$	$60.4(2)$	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$116.8(2)$
$\mathrm{C}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$108.0(2)$	$\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.1(2)$

$277 \mathrm{~nm}\left(\varepsilon 10000\right.$ and $19900 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.70(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, 10-\mathrm{H}), 1.79(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}$, $10-\mathrm{H}), 3.03(1 \mathrm{H}, \mathrm{t}, J 5.2 \mathrm{~Hz}, 2$ - or $6-\mathrm{H}), 3.18(1 \mathrm{H}, \mathrm{m}, 1-$ or $7-\mathrm{H})$, $3.26(1 \mathrm{H}, \mathrm{m}, 7$ - or $1-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{t}, J 5.2 \mathrm{~Hz}, 6$ - or $2-\mathrm{H}), 5.63$ $(1 \mathrm{H}, \mathrm{dd}, J 6$ and $3 \mathrm{~Hz}, 8$ - or $9-\mathrm{H}), 6.01(1 \mathrm{H}$, dd, $J 6$ and 3 Hz , 9- or $8-\mathrm{H}), 6.30(1 \mathrm{H}, \mathrm{s}, \mathrm{C}=\mathrm{CHC}=\mathrm{O})$, and $7.25-7.67(5 \mathrm{H}, \mathrm{m}$, Ph); $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 209.23$ (s, $\mathrm{C}=\mathrm{O}$), $173.80(\mathrm{~s}), 133.89$ (s), 133.55 (d), 132.02 (d), 131.00 (d), 129.85 (d), 128.93 ($2 \mathrm{C}, \mathrm{d}$), 127.08 ($2 \mathrm{C}, \mathrm{d}$), 52.15 (d), 52.06 (t), 47.53 (d), 44.85 (d) and $44.35(\mathrm{~d}) ; m / z 222\left(M^{+}\right), 157\left(M^{+}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $66\left(\mathrm{C}_{5} \mathrm{H}_{6}\right.$, 100%).

5-Methyltricyclo[5.2.1.0 ${ }^{2,6}$]deca-4,8-dien-3-one 1b.-To a stirred solution of compound $1 \mathbf{1 d}(5.24 \mathrm{~g}, 0.0297 \mathrm{~mol})$ in dry $\mathrm{Et}_{2} \mathrm{O}\left(80 \mathrm{~cm}^{3}\right)$ at room temperature under nitrogen was added a solution of methyllithium in $\mathrm{Et}_{2} \mathrm{O}\left(0.93 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 50 \mathrm{~cm}^{3}\right)$ during 80 min . The reaction mixture was refluxed for 80 min , poured into ice-cold 25% sulphuric acid, and stirred vigorously for 2 h . Most of the organic solvent was evaporated off and the aq. solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed successively with aq. sodium hydrogen carbonate containing $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and brine, dried, and evaporated to dryness. Chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant and bulb-to-bulb distillation yielded compound $1 \mathrm{~b}(3.18 \mathrm{~g}$, 67%), m.p. $48.0-48.5^{\circ} \mathrm{C}$ (Found: C, 82.0; H, 7.5. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 82.46 ; \mathrm{H}, 7.55 \%) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) 1680$ and $1615 \mathrm{~cm}^{-1}$ (α, β-unsaturated ketone); $\lambda_{\max }$ (cyclohexane) $223 \mathrm{~nm}(\varepsilon 10470$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.59(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}$, $10-\mathrm{H}), 1.77(1 \mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}, 10-\mathrm{H}), 1.98(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.85$ ($1 \mathrm{H}, \mathrm{t}, J 5.5 \mathrm{~Hz}, 2$ - or $6-\mathrm{H}), 3.00(1 \mathrm{H}, \mathrm{m}, 1-$ or $7-\mathrm{H}), 3.19(1 \mathrm{H}$, $\mathrm{m}, 7-$ or $1-\mathrm{H}), 3.22(1 \mathrm{H}, \mathrm{t}, J 5.5 \mathrm{~Hz}, 6-$ or $2-\mathrm{H}), 5.69(1 \mathrm{H}, \mathrm{s}$, $\mathrm{C}=\mathrm{CHC}=\mathrm{O}), 5.79(1 \mathrm{H}$, dd, $J 5.5$ and $2.75 \mathrm{~Hz}, 8-$ or $9-\mathrm{H})$, and $5.99(1 \mathrm{H}$, dd, $J 5.5$ and $2.75 \mathrm{~Hz}, 9-$ or $8-\mathrm{H}) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$; CDCl_{3}) 209.86 (s, C=O), 178.16 (s), 133.67 (d), 133.13 (d), 131.52 (d), 52.43 (t), 51.77 (d), 51.23 (d), 44.37 (d), 43.36 (d) and 18.13 (q, Me); $m / z 160\left(M^{+}\right), 95\left(M^{+}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $66\left(\mathrm{C}_{5} \mathrm{H}_{6}, 100 \%\right)$.

4-Phenylpentacyclo[5.3.0.0 $\left.0^{2,5} .0^{3,9} .0^{4,8}\right]$ decan-6-one 2a.-A

 solution of compound $1 \mathrm{a}(1.10 \mathrm{~g}, 4.95 \mathrm{mmol})$ in benzene (800 cm^{3}) was irradiated at room temperature for 6.5 h , and evaporated to dryness. Chromatography on silica gel withbenzene- $\mathrm{Et}_{2} \mathrm{O}$ yielded compound $\mathbf{2 a}(0.60 \mathrm{~g}, 54 \%$) as an oil, together with the photodimer ($0.24 \mathrm{~g}, 22 \%$) of compound 1 a and unchanged substrate 1a ($0.11 \mathrm{~g}, 10 \%$ recovery). For compound 2 a (Found: $\mathrm{C}, 86.35 ; \mathrm{H}, 6.4 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ requires C , $86.45 ; \mathrm{H}, 6.35 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1755 \mathrm{~cm}^{-1}$ (cyclopentanone); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.72(1 \mathrm{H}, \mathrm{d}, J 11.6 \mathrm{~Hz}, 10-\mathrm{H}), 1.81(1 \mathrm{H}$, $\mathrm{d}, J 11.6 \mathrm{~Hz}, 10-\mathrm{H}), 2.40(1 \mathrm{H}, \mathrm{m}), 2.57(1 \mathrm{H}, \mathrm{d}, J 5.5 \mathrm{~Hz}), 2.95$ $(1 \mathrm{H}, \mathrm{q}, J 6.0 \mathrm{~Hz}), 3.02(1 \mathrm{H}, \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{q}, J 5.0 \mathrm{~Hz}), 3.22$ $(1 \mathrm{H}, \mathrm{m}), 3.32(1 \mathrm{H}, \mathrm{dt}, J 6.7$ and 5.0 Hz$)$, and $7.04-7.35(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}) ; \delta_{\mathrm{c}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 216.62(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 142.48$ (s), 128.50 ($2 \mathrm{C}, \mathrm{d}$), 126.36 (d), 124.94 (2 C, d), 51.05 (d), 48.32 (d), 46.29 (d), 46.24 (d), 45.50 (s), 43.18 (d), 41.67 (t), 41.51 (d) and 35.54 (d); $m / z 222\left(M^{+}\right)$and $194\left(M^{+}-\mathrm{CO}, 100 \%\right)$.

4-Methylpentacyclo[5.3.0.0 $0^{2,5} .0^{3,9} .0^{4,8}$] decan-6-one 2 b .-A solution of compound $1 \mathrm{lb}(3.18 \mathrm{~g}, 19.9 \mathrm{mmol})$ in benzene ($1000 \mathrm{~cm}^{3}$) was irradiated at room temperature for 21 h , and evaporated to dryness. Chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluant yielded compound $\mathbf{2 b}(2.07 \mathrm{~g}, 65 \%)$ as an oil (Found: C, 82.2; H, 7.6. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 82.46 ; \mathrm{H}, 7.55 \%$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) \quad 1750 \mathrm{~cm}^{-1}$ (cyclopentanone); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.13$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $1.59(1 \mathrm{H}, \mathrm{d}, J 11.3 \mathrm{~Hz}, 10-\mathrm{H}), 1.71$ $(1 \mathrm{H}, \mathrm{d}, J 11.3 \mathrm{~Hz}, 10-\mathrm{H}), 2.13(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 2.25(1 \mathrm{H}, \mathrm{m}), 2.67$ $(1 \mathrm{H}, \mathrm{q}, J 5 \mathrm{~Hz}), 2.81(2 \mathrm{H}, \mathrm{m}), 2.92(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $3.04(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 217.55(\mathrm{~s}, \mathrm{C}=\mathrm{O}), 51.50(\mathrm{~d}), 46.27$ (d), 46.20 (d), 46.00 (d), 43.22 (d), 41.55 (t), 40.61 (d), 40.13 (s), 35.71 (d) and $19.68(\mathrm{q}, \mathrm{Me}) ; m / z 160\left(M^{+}\right), 145\left(M^{+}-\mathrm{Me}\right), 132$ ($M^{+}-\mathrm{CO}$) and $117\left(M^{+}-\mathrm{CO}-\mathrm{Me}, 100 \%\right.$).
BF_{3}-Catalysed Transformation of Compound 2a into Compound 3a.-To a solution of compound 2 a (774 mg , 3.49 mmol) in benzene $\left(60 \mathrm{~cm}^{3}\right)$ was added BF_{3}-diethyl ether ($0.8 \mathrm{~cm}^{3}$), and the mixture was stirred for 30 min at room temperature, then washed with aq. sodium hydrogen carbonate, and the washings were extracted with benzene. The combined organic solution was washed with brine, dried over MgSO_{4}, and evaporated under reduced pressure. The residue was chromatographed on silica gel with benzene as eluant to yield compound 3a ($325 \mathrm{mg}, 42 \%$), m.p. $61-61.5^{\circ} \mathrm{C}$ (Found: C, 86.4 ; $\mathrm{H}, 6.35 . \mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}$ requires C , $86.45 ; \mathrm{H}, 6.35 \%$); $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right)$ $1720 \mathrm{~cm}^{-1} ; \lambda_{\text {max }}$ (cyclohexane) $218 \mathrm{~nm}\left(\varepsilon 9960 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.63(1 \mathrm{H}$, ddd, $J 7.6,5.0$ and 1.6 Hz$)$, $2.00-2.19(6 \mathrm{H}, \mathrm{m}), 2.42(1 \mathrm{H}, \mathrm{t}, J 5.3 \mathrm{~Hz}), 2.91(1 \mathrm{H}, \mathrm{q}, J 5.3 \mathrm{~Hz})$ and 7.18-7.35 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$); $\delta_{\mathrm{c}}\left(67.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right.$) see Table 1; $m / z 222\left(M^{+}\right), 194\left(M^{+}-\mathrm{CO}\right)$ and $91\left(\mathrm{C}_{7} \mathrm{H}_{7}{ }^{+}, 100 \%\right)$.

BF $_{3}$-Catalysed Transformation of Compound $\mathbf{2 b}$ into Compound 3b.-To a solution of compound $\mathbf{2 b}(90 \mathrm{mg}, 0.56$ mmol) in benzene ($6 \mathrm{~cm}^{3}$) was added BF_{3}-diethyl ether (0.2 cm^{3}), and the mixture was stirred for 21 h at room temperature, then washed with aq. sodium hydrogen carbonate, and the washings were extracted with benzene. The combined organic solution was washed with brine, dried over MgSO_{4}, and evaporated under reduced pressure. The residue was chromatographed on silica gel with benzene as eluant to yield compound 3b ($30 \mathrm{mg}, 33 \%$) as pale yellow oil (Found: C, 82.1; H, 7.7. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 82.46 ; \mathrm{H}, 7.55 \%$); $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) 1715 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}(\mathrm{EtOH}) 216 \mathrm{~nm}\left(\varepsilon 2290 \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.16(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.42(1 \mathrm{H}, \mathrm{m}), 1.51(1 \mathrm{H}$, ddd, $J 8.0,4.0$ and 1.5 Hz$), 1.67(2 \mathrm{H}, \mathrm{m}), 1.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.06(1 \mathrm{H}, \mathrm{dt}, J 8.0$ and $5.4 \mathrm{~Hz}), 2.29(1 \mathrm{H}, \mathrm{t}, J 5.4 \mathrm{~Hz})$, and $2.81(2 \mathrm{H}, \mathrm{q}, J 5.4 \mathrm{~Hz}) ; \delta_{\mathrm{C}}(67.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ see Table $1 ; m / z 160\left(M^{+}\right), 132\left(M^{+}-\mathrm{CO}\right)$ and 117 (M^{+}- CO - Me, 100%).
Ag^{+}-Catalysed Transformation of Compound $\mathbf{2 a}$ into Compound 3a.-A solution of compound $2 \mathbf{2 a}(200 \mathrm{mg}, 0.90$ mmol) and silver perchlorate ($270 \mathrm{mg}, 1.30 \mathrm{mmol}$) in benzene ($6.5 \mathrm{~cm}^{3}$) was stirred at room temperature in the dark for 5 h .

The mixture was washed with aq. sodium hydrogen carbonate, and the washings were extracted with benzene. The combined extract was washed with brine, dried over MgSO_{4}, and evaporated under reduced pressure. The residue was chromatographed on silica gel with benzene as the eluant to yield compound 3 a ($52 \mathrm{mg}, 26 \%$) and compound 2 a ($110 \mathrm{mg}, 55 \%$ recovery).

Acetate 9.-To a solution of $\mathrm{NaBH}_{4}(36 \mathrm{mg}, 0.95 \mathrm{mmol})$ in methanol $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added a solution of compound $\mathbf{2 a}$ ($110 \mathrm{mg}, 0.495 \mathrm{mmol}$) portionwise. The solution was stirred for 30 min and then concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was washed with brine, dried over MgSO_{4}, and evaporated to give an alcohol ($102 \mathrm{mg}, 92 \%$), m.p. $105.5-107^{\circ} \mathrm{C}$. The product was dissolved in acetic anhydride (5 ml) and refluxed for 1 h . The mixture was poured into water, and the mixture was stirred at room temperature for 1.5 h , and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were washed successively with aq. NaHCO_{3} and brine, dried over MgSO_{4}, and evaporated. The residue was chromatographed on silica gel with benzene as eluant to yield the acetate 9 ($95 \mathrm{mg}, 78 \%$) as an oil (Found: C, 80.9; H, 6.9. $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.18 ; \mathrm{H}, 6.81 \%$); $\mathrm{v}_{\max }\left(\mathrm{CHCl}_{3}\right) 1725$ $\mathrm{cm}^{-1} ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36(1 \mathrm{H}, \mathrm{d}, J 11.2 \mathrm{~Hz}, 10-\mathrm{H}), 1.72$ ($1 \mathrm{H}, \mathrm{d}, J 11.2 \mathrm{~Hz}, 10-\mathrm{H}$), $1.90(3 \mathrm{H}, \mathrm{s}, \mathrm{Ac}), 2.04(1 \mathrm{H}, \mathrm{s}), 2.5-3.2$ $(6 \mathrm{H}, \mathrm{m}), 5.7(1 \mathrm{H}, \mathrm{brs}, \mathrm{CHOAc})$ and $7.1-7.4(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

X-Ray Structure Analysis of Compound 3a.-Crystal data: $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}, \quad M=222.27$. Monoclinic; space group $P 2_{1} / a$, $a=12.863(3), b=8.079(2), c=11.793(4) \AA, \beta=101.76(2)^{\circ}$, $V=1094.3(5) \AA^{3}, Z=4$ and $D_{\mathrm{c}}=1.35 \mathrm{~g} \mathrm{~cm}^{-3}$. A crystal of dimension ca. $0.3 \times 0.3 \times 0.5 \mathrm{~mm}$ was used. The lattice parameters were obtained from least-squares analysis of 25 reflections with $7.3<\theta<14.2^{\circ}$ from graphite-monochromated Mo-K α radiation $(\lambda=0.71073 \AA$) on a Syntex-R3 diffractiometer.
Intensity data of 2691 reflections were collected at room temperature by $\omega-2 \theta$ scan technique with $1<\theta<27.5^{\circ}$ and $-17 \leq h \leq 17,0 \leq k \leq 11,0 \leq l \leq 16$. Intensity standards were measured every 200 reflections; no significant decomposition of the crystal was observed.

[^1]Of the 2691 total unique reflections, 2028 were considered observed at the level of $\left|F_{o}\right|>3.0 \sigma\left|F_{o}\right|$. Data were corrected for Lorentz and polarisation effects in the usual way but not for absorption as the linear absorption coefficient was small $\left[\lambda(\mathrm{MoK} \alpha)=0.9 \mathrm{~cm}^{-1}\right]$.

The structure was solved by direct methods (MULTAN78). All non-hydrogen atoms were located on the initial E-synthesis. All hydrogens were located by the difference Fourier map and included in the further calculations. Block-diagonal leastsquares refinements with 17 anisotropic non-hydrogen atoms and 14 isotropic hydrogens were used. The weighting scheme $w=1 /\left[\sigma^{2}\left(F_{0}\right)\right]$, with $\sigma\left(F_{\mathrm{o}}\right)$ from counting statistics, gave satisfactory agreement analysis. Final R - and R_{w}-values were 0.061 and 0.051 .

All calculations were performed on a HITAC $\mathbf{M}-200 \mathrm{H}$ computer at the Hiroshima University using structure analysis program system UNICS3. ${ }^{9, *}$

References

1 L. Cassar, P. E. Eaton and J. Halpern, J. Am. Chem. Soc., 1970, 92, 6366; W. G. Dauben, M. G. Buzzolini, C. H. Schallhorn and D. L. Whalen, Tetrahedron Lett., 1970, 787; L. A. Paquette and J. C. Stowell, J. Am. Chem. Soc., 1970, 92, 2584; L. A. Paquette and R. S. Beckley, J. Am. Chem. Soc., 1975, 97, 1084; L. A. Paquette, R. S. Beckley and W. B. Farnham, J. Am. Chem. Soc., 1975, 97, 1089; L. A. Paquette, J. S. Ward, R. A. Boggs and W. B. Farnham, J. Am. Chem. Soc., 1975,97, 1101; L.A. Paquette, R. A. Boggs, W. B. Farnham and R.S. Beckley, J. Am. Chem. Soc., 1975, 97, 1112.
2 A. J. H. Klunder, G. J. A. Ariaans and B. Zwanenburg, Tetrahedron Lett., 1984, 25, 5457.
3 G. Jones, II and B. R. Ramachandran, J. Org. Chem., 1976, 41, 798.
4 T.-Y. Luh, Tetrahedron Lett., 1977, 2951.
5 T. Ogino and K. Awano, Chem. Lett., 1982, 891; T. Ogino, K. Awano, T. Ogihara and K. Isogai, Chem. Lett., 1984, 2023.

6 R. C. Cookson, J. Hudec and R. O. Williams, J. Chem. Soc. C, 1967, 1382.

7 N. L. Allinger and Y. H. Yuh, QCPE, 1980, 12, 395.
8 Recently, a related cyclobutyl ketone to cyclopropyl ketone rearrangement in a tetracyclodecane system has appeared: O. S. Mills, C. I. F. Watt and S. M. Whitworth, J. Chem. Soc., Perkin Trans. 2, 1990, 487.
9 T. Sakurai and K. Kobayashi, Rep. Inst. Phys. Chem. Res., 1979, 56, 691.

[^0]: \dagger Our photochemical studies of compounds $\mathbf{1 a}$ and $\mathbf{1 b}$ and the structure elucidation of the photodimer of compound la will appear elsewhere.

[^1]: * Supplementary data (see section 5.6.3 of Instructions for Authors, January issue). Full lists of atomic co-ordinates and tables of thermal parameters have been deposited at the Cambridge Crystallographic Data Centre.

